Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Mol Genet Genomic Med ; 11(7): e2172, 2023 07.
Article in English | MEDLINE | ID: covidwho-2291714

ABSTRACT

BACKGROUND: Vitamin D (Vit.D) has an important role in protecting COVID-19 patients. This study investigated the changes in vitamin D receptor (VDR) expression and interleukin 6 levels in patients with COVID-19. MATERIALS AND METHODS: 120 hospitalized patients and 120 healthy people participated in this study, both group adjusted by sex and age. Vit.D was measured with HPLC, the expression of VDR gene was done with Real-time PCR, and IL-6 was measured with ELISA assay. RESULTS: Our findings showed no significant difference in the case of Vit.D (25-OH-D3) between the two studied groups, interestingly the expression of VDR was statistically lower in the patients with COVID-19, p-value = 0.003. VDR expression was lower in the patient with diabetes, hypertension and cardiovascular disease, significantly, p-value = 0.002. The level of IL-6 was statistically higher in the COVID-19 group, p-value = 0.003. CONCLUSION: Alongside the important role of 25-OH-D3 in COVID-19 patients, the quality and quantity of the VDR expression and its role in the level of IL-6 are the promising risk factors in the future. Further studies are needed to determine the factors increasing the expression level of VDR, especially in the patients with diabetes, hypertension and cardiovascular disease.


Subject(s)
COVID-19 , Cardiovascular Diseases , Hypertension , Humans , Receptors, Calcitriol/genetics , Interleukin-6/genetics , COVID-19/genetics , Vitamin D , Vitamins , Hypertension/genetics
2.
J Med Virol ; 95(4): e28698, 2023 04.
Article in English | MEDLINE | ID: covidwho-2251206

ABSTRACT

To evaluate the genetic relationship between hypertension and COVID-19 and explore the molecular pathways linking hypertension to COVID-19. We performed genetic correlation and Mendelian randomization (MR) analyses to assess potential associations between hypertension and hospitalized COVID-19. We compared genome-wide association signals to reveal shared genetic variation between hypertension and hospitalized COVID-19. Moreover, hypertension-driven molecular pathways were constructed based on large-scale literature data to understand the influence of hypertension on COVID-19 at the molecular level. Hypertension has a positive genetic correlation with COVID-19 (rg = 0.19). The MR analyses indicate that genetic liability to hypertension confers a causal effect on hospitalized COVID-19 (odds ratio [OR]: 1.05, confidence interval [CI]: 1.00-1.09, p = 0.030). Hypertension and hospitalized COVID-19 have three overlapping loci and share eight protein-coding risk genes, including ABO, CSF2, FUT2, IZUMO1, MAMSTR, NPNT, RASIP1, and WNT3. Molecular pathway analysis suggests that hypertension may promote the development of COVID-19 through the induction of inflammatory pathways. Our study suggests that genetically determined hypertension may increase the risk for severe COVID-19. The shared genetic variation and the connecting molecular pathways may underline causal links between hypertension and COVID-19.


Subject(s)
COVID-19 , Hypertension , Humans , COVID-19/complications , COVID-19/genetics , Genome-Wide Association Study , Hypertension/complications , Hypertension/genetics , Odds Ratio , Polymorphism, Single Nucleotide
3.
Biomed Res Int ; 2023: 6996307, 2023.
Article in English | MEDLINE | ID: covidwho-2194250

ABSTRACT

Several studies have been done to identify comorbidities of COVID-19. In this work, we developed an analytical bioinformatics framework to reveal COVID-19 comorbidities, their genomic associations, and molecular mechanisms accomplishing transcriptomic analyses of the RNA-seq datasets provided by the Gene Expression Omnibus (GEO) database, where normal and infected tissues were evaluated. Using the framework, we identified 27 COVID-19 correlated diseases out of 7,092 collected diseases. Analyzing clinical and epidemiological research, we noticed that our identified 27 diseases are associated with COVID-19, where hypertension, diabetes, obesity, and lung cancer are observed several times in COVID-19 patients. Therefore, we selected the above four diseases and performed assorted analyses to demonstrate the association between COVID-19 and hypertension, diabetes, obesity, and lung cancer as comorbidities. We investigated genomic associations with the cross-comparative analysis and Jaccard's similarity index, identifying shared differentially expressed genes (DEGs) and linking DEGs of COVID-19 and the comorbidities, in which we identified hypertension as the most associated illness. We also revealed molecular mechanisms by identifying statistically significant ten pathways and ten ontologies. Moreover, to understand cellular physiology, we did protein-protein interaction (PPI) analyses among the comorbidities and COVID-19. We also used the degree centrality method and identified ten biomarker hub proteins (IL1B, CXCL8, FN1, MMP9, CXCL10, IL1A, IRF7, VWF, CXCL9, and ISG15) that associate COVID-19 with the comorbidities. Finally, we validated our findings by searching the published literature. Thus, our analytical approach elicited interconnections between COVID-19 and the aforementioned comorbidities in terms of remarkable DEGs, pathways, ontologies, PPI, and biomarker hub proteins.


Subject(s)
COVID-19 , Hypertension , Humans , COVID-19/epidemiology , COVID-19/genetics , Genomics , Computational Biology , Hypertension/epidemiology , Hypertension/genetics , Obesity/epidemiology , Obesity/genetics
4.
Hypertens Res ; 45(10): 1582-1598, 2022 10.
Article in English | MEDLINE | ID: covidwho-2062199

ABSTRACT

Renalase is a ~38 kDa flavin-adenine dinucleotide (FAD) domain-containing protein that can function as a cytokine and an anomerase. It is emerging as a novel regulator of cardiometabolic diseases. Expressed mainly in the kidneys, renalase has been reported to have a hypotensive effect and may control blood pressure through regulation of sympathetic tone. Furthermore, genetic variations in the renalase gene, such as a functional missense polymorphism (Glu37Asp), have implications in the cardiovascular and renal systems and can potentially increase the risk of cardiometabolic disorders. Research on the physiological functions and biochemical actions of renalase over the years has indicated a role for renalase as one of the key proteins involved in various disease states, such as diabetes, impaired lipid metabolism, and cancer. Recent studies have identified three transcription factors (viz., Sp1, STAT3, and ZBP89) as key positive regulators in modulating the expression of the human renalase gene. Moreover, renalase is under the post-transcriptional regulation of two microRNAs (viz., miR-29b, and miR-146a), which downregulate renalase expression. While renalase supplementation may be useful for treating hypertension, inhibition of renalase signaling may be beneficial to patients with cancerous tumors. However, more incisive investigations are required to unravel the potential therapeutic applications of renalase. Based on the literature pertaining to the function and physiology of renalase, this review attempts to consolidate and comprehend the role of renalase in regulating cardiometabolic and renal disorders.


Subject(s)
Hypertension , Kidney Diseases , MicroRNAs , Humans , Hypertension/genetics , Kidney Diseases/genetics , MicroRNAs/genetics , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism
5.
Hum Genomics ; 16(1): 37, 2022 09 08.
Article in English | MEDLINE | ID: covidwho-2038945

ABSTRACT

INTRODUCTION: A major challenge to enabling precision health at a global scale is the bias between those who enroll in state sponsored genomic research and those suffering from chronic disease. More than 30 million people have been genotyped by direct-to-consumer (DTC) companies such as 23andMe, Ancestry DNA, and MyHeritage, providing a potential mechanism for democratizing access to medical interventions and thus catalyzing improvements in patient outcomes as the cost of data acquisition drops. However, much of these data are sequestered in the initial provider network, without the ability for the scientific community to either access or validate. Here, we present a novel geno-pheno platform that integrates heterogeneous data sources and applies learnings to common chronic disease conditions including Type 2 diabetes (T2D) and hypertension. METHODS: We collected genotyped data from a novel DTC platform where participants upload their genotype data files and were invited to answer general health questionnaires regarding cardiometabolic traits over a period of 6 months. Quality control, imputation, and genome-wide association studies were performed on this dataset, and polygenic risk scores were built in a case-control setting using the BASIL algorithm. RESULTS: We collected data on N = 4,550 (389 cases / 4,161 controls) who reported being affected or previously affected for T2D and N = 4,528 (1,027 cases / 3,501 controls) for hypertension. We identified 164 out of 272 variants showing identical effect direction to previously reported genome-significant findings in Europeans. Performance metric of the PRS models was AUC = 0.68, which is comparable to previously published PRS models obtained with larger datasets including clinical biomarkers. DISCUSSION: DTC platforms have the potential of inverting research models of genome sequencing and phenotypic data acquisition. Quality control (QC) mechanisms proved to successfully enable traditional GWAS and PRS analyses. The direct participation of individuals has shown the potential to generate rich datasets enabling the creation of PRS cardiometabolic models. More importantly, federated learning of PRS from reuse of DTC data provides a mechanism for scaling precision health care delivery beyond the small number of countries who can afford to finance these efforts directly. CONCLUSIONS: The genetics of T2D and hypertension have been studied extensively in controlled datasets, and various polygenic risk scores (PRS) have been developed. We developed predictive tools for both phenotypes trained with heterogeneous genotypic and phenotypic data generated outside of the clinical environment and show that our methods can recapitulate prior findings with fidelity. From these observations, we conclude that it is possible to leverage DTC genetic repositories to identify individuals at risk of debilitating diseases based on their unique genetic landscape so that informed, timely clinical interventions can be incorporated.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Hypertension , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Hypertension/genetics , Multifactorial Inheritance/genetics , Phenotype , Precision Medicine , Risk Factors
6.
Kidney Blood Press Res ; 47(9): 556-564, 2022.
Article in English | MEDLINE | ID: covidwho-1950524

ABSTRACT

BACKGROUND: Gitelman's and Bartter's syndromes (GS/BS) are rare genetic tubulopathies characterized by electrolyte imbalance and activation of the renin-angiotensin-aldosterone system (RAAS). These syndromes have intriguing biochemical and hormonal abnormalities that lead them to be protected from hypertension and cardiovascular and renal remodeling. SUMMARY: In this review, we explore the biochemical/molecular mechanisms induced by the activation of the RAAS and its counterregulatory arm which is particularly activated in GS/BS patients, in the context of blood pressure regulation. In addition, we report our findings in the context of the COVID-19 pandemic where we observed GS/BS subjects being protected from infection. KEY MESSAGES: The intracellular pathways induced by Ang II, starting from induction of oxidative stress and vasoconstriction, are crucial for the progression toward cardiovascular-renal remodeling and might be useful targets in order to reduce/halt the progression of Ang II/oxidative stress-induced cardiovascular-renal morbidity in several diseases.


Subject(s)
Bartter Syndrome , COVID-19 , Gitelman Syndrome , Hypertension , Bartter Syndrome/genetics , Bartter Syndrome/metabolism , Electrolytes , Gitelman Syndrome/genetics , Gitelman Syndrome/metabolism , Humans , Hypertension/genetics , Pandemics
7.
Int J Mol Sci ; 23(5)2022 Feb 22.
Article in English | MEDLINE | ID: covidwho-1736940

ABSTRACT

Contrary to public perception, hypertension remains one of the most important public health problems in the United States, affecting 46% of adults with increased risk for heart attack, stroke, and kidney diseases. The mechanisms underlying poorly controlled hypertension remain incompletely understood. Recent development in the Cre/LoxP approach to study gain or loss of function of a particular gene has significantly helped advance our new insights into the role of proximal tubule angiotensin II (Ang II) and its AT1 (AT1a) receptors in basal blood pressure control and the development of Ang II-induced hypertension. This novel approach has provided us and others with an important tool to generate novel mouse models with proximal tubule-specific loss (deletion) or gain of the function (overexpression). The objective of this invited review article is to review and discuss recent findings using novel genetically modifying proximal tubule-specific mouse models. These new studies have consistently demonstrated that deletion of AT1 (AT1a) receptors or its direct downstream target Na+/H+ exchanger 3 (NHE3) selectively in the proximal tubules of the kidney lowers basal blood pressure, increases the pressure-natriuresis response, and induces natriuretic responses, whereas overexpression of an intracellular Ang II fusion protein or AT1 (AT1a) receptors selectively in the proximal tubules increases proximal tubule Na+ reabsorption, impairs the pressure-natriuresis response, and elevates blood pressure. Furthermore, the development of Ang II-induced hypertension by systemic Ang II infusion or by proximal tubule-specific overexpression of an intracellular Ang II fusion protein was attenuated in mutant mice with proximal tubule-specific deletion of AT1 (AT1a) receptors or NHE3. Thus, these recent studies provide evidence for and new insights into the important roles of intratubular Ang II via AT1 (AT1a) receptors and NHE3 in the proximal tubules in maintaining basal blood pressure homeostasis and the development of Ang II-induced hypertension.


Subject(s)
Angiotensin II/metabolism , Hypertension/metabolism , Receptor, Angiotensin, Type 1/metabolism , Angiotensin II/genetics , Animals , Blood Pressure , Disease Models, Animal , Gain of Function Mutation , Humans , Hypertension/genetics , Loss of Function Mutation , Mice , Receptor, Angiotensin, Type 1/genetics , Sodium-Hydrogen Exchanger 3/metabolism
8.
Int J Med Sci ; 19(2): 402-415, 2022.
Article in English | MEDLINE | ID: covidwho-1662815

ABSTRACT

Hypertension, diabetes mellitus, and coronary artery disease are common comorbidities and dangerous factors for infection and serious COVID-19. Polymorphisms in genes associated with comorbidities may help observe susceptibility and disease severity variation. However, specific genetic factors and the extent to which they can explain variation in susceptibility of severity are unclear. Therefore, we evaluated candidate genes associated with COVID-19 and hypertension, diabetes mellitus, and coronary artery disease. In particular, we performed searches against OMIM, NCBI, and other databases, protein-protein interaction network construction, and GO and KEGG pathway enrichment analyses. Results showed that the associated overlapping genes were TLR4, NLRP3, MBL2, IL6, IL1RN, IL1B, CX3CR1, CCR5, AGT, ACE, and F2. GO and KEGG analyses yielded 302 GO terms (q < 0.05) and 29 signaling pathways (q < 0.05), respectively, mainly including coronavirus disease-COVID-19 and cytokine-cytokine receptor interaction. IL6 and AGT were central in the PPI, with 8 and 5 connections, respectively. In this study, we identified 11 genes associated with both COVID-19 and three comorbidities that may contribute to infection and disease severity. The key genes IL6 and AGT are involved in regulating immune response, cytokine activity, and viral infection. Therefore, RAAS inhibitors, AGT antisense nucleotides, cytokine inhibitors, vitamin D, fenofibrate, and vaccines regulating non-immune and immune factors could be potential strategies to prevent and cure COVID-19. The study provides a basis for further investigation of genes and pathways with predictive value for the risk of infection and prognosis and could help guide drug and vaccine development to improve treatment efficacy and the development of personalised treatments, especially for COVID-19 individuals with common comorbidities.


Subject(s)
COVID-19/genetics , COVID-19/epidemiology , Comorbidity , Coronary Artery Disease/complications , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Diabetes Complications/epidemiology , Diabetes Complications/genetics , Humans , Hypertension/complications , Hypertension/epidemiology , Hypertension/genetics , Mutation , Protein Interaction Maps
9.
Front Endocrinol (Lausanne) ; 12: 688071, 2021.
Article in English | MEDLINE | ID: covidwho-1399132

ABSTRACT

Coronavirus disease 19 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to scale and threaten human health and public safety. It is essential to identify those risk factors that lead to a poor prognosis of the disease. A predisposing host genetic background could be one of these factors that explain the interindividual variability to COVID-19 severity. Thus, we have studied whether the rs4341 and rs4343 polymorphisms of the angiotensin converting enzyme (ACE) gene, key regulator of the renin-aldosterone-angiotensin system (RAAS), could explain the different outcomes of 128 COVID-19 patients with diverse degree of severity (33 asymptomatic or mildly symptomatic, 66 hospitalized in the general ward, and 29 admitted to the ICU). We found that G allele of rs4341 and rs4343 was associated with severe COVID-19 in hypertensive patients, independently of gender (p<0.05). G-carrier genotypes of both polymorphisms were also associated with higher mortality (p< 0.05) and higher severity of COVID-19 in dyslipidemic (p<0.05) and type 2 diabetic patients (p< 0.01). The association of G alleles with disease severity was adjusted for age, sex, BMI and number of comorbidities, suggesting that both the metabolic comorbidities and the G allele act synergistically on COVID-19 outcome. Although we did not find a direct association between serum ACE levels and COVID-19 severity, we found higher levels of ACE in the serum of patients with the GG genotype of rs4341 and rs4343 (p<0.05), what could explain the higher susceptibility to develop severe forms of the disease in patients with the GG genotype, in addition to hypertension and dyslipidemia. In conclusion, our preliminary study suggests that the G-containing genotypes of rs4341 and rs4343 confer an additional risk of adverse COVID-19 prognosis. Thus, rs4341 and rs4343 polymorphisms of ACE could be predictive markers of severity of COVID-19 in those patients with hypertension, dyslipidemia or diabetes. The knowledge of these genetic data could contribute to precision management of SARS-CoV-2 infected patients when admitted to hospital.


Subject(s)
COVID-19/genetics , Diabetes Mellitus/genetics , Dyslipidemias/genetics , Genetic Variation/genetics , Hypertension/genetics , Peptidyl-Dipeptidase A/genetics , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Dyslipidemias/diagnosis , Dyslipidemias/epidemiology , Female , Hospitalization/trends , Humans , Hypertension/diagnosis , Hypertension/epidemiology , Male , Middle Aged , Pilot Projects , Risk Factors , Severity of Illness Index , Spain/epidemiology
10.
Pregnancy Hypertens ; 26: 17-23, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1364411

ABSTRACT

AIMS: The aim of this study was to apply the Mendelian randomization (MR) design to explore the potential causal association between COVID-19 and the risk of hypertension disorders in pregnancy. METHODS: Our primary genetic instrument comprised 8 single-nucleotide polymorphisms (SNPs) associated with COVID-19 at genome-wide significance. Data on the associations between the SNPs and the risk of hypertension disorders in pregnancy were obtained from study based on a very large cohort of European population. The random-effects inverse-variance weighted method was conducted for the main analyses, with a complementary analysis of the weighted median and MR-Egger approaches. RESULTS: Using IVW, we found that genetically predicted COVID-19 was significantly positively associated with hypertension disorders in pregnancy, with an odds ratio (OR) of 1.111 [95% confidence interval (CI) 1.042-1.184; P = 0.001]. Weighted median regression also showed directionally similar estimates [OR 1.098 (95% CI, 1.013-1.190), P = 0.023]. Both funnel plots and MR-Egger intercepts suggest no directional pleiotropic effects observed. CONCLUSIONS: Our findings provide direct evidence that there is a shared genetic predisposition so that patients infected with COVID-19 may be causally associated with increased risk of hypertension disorders in pregnancy.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease , Hypertension/etiology , Mendelian Randomization Analysis/methods , Polymorphism, Single Nucleotide , Risk Assessment/methods , SARS-CoV-2 , COVID-19/complications , COVID-19/epidemiology , Female , Global Health , Humans , Hypertension/epidemiology , Hypertension/genetics , Incidence , Pregnancy , Risk Factors
11.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1254437

ABSTRACT

Despite the association of prevalent health conditions with coronavirus disease 2019 (COVID-19) severity, the disease-modifying biomolecules and their pathogenetic mechanisms remain unclear. This study aimed to understand the influences of COVID-19 on different comorbidities and vice versa through network-based gene expression analyses. Using the shared dysregulated genes, we identified key genetic determinants and signaling pathways that may involve in their shared pathogenesis. The COVID-19 showed significant upregulation of 93 genes and downregulation of 15 genes. Interestingly, it shares 28, 17, 6 and 7 genes with diabetes mellitus (DM), lung cancer (LC), myocardial infarction and hypertension, respectively. Importantly, COVID-19 shared three upregulated genes (i.e. MX2, IRF7 and ADAM8) with DM and LC. Conversely, downregulation of two genes (i.e. PPARGC1A and METTL7A) was found in COVID-19 and LC. Besides, most of the shared pathways were related to inflammatory responses. Furthermore, we identified six potential biomarkers and several important regulatory factors, e.g. transcription factors and microRNAs, while notable drug candidates included captopril, rilonacept and canakinumab. Moreover, prognostic analysis suggests concomitant COVID-19 may result in poor outcome of LC patients. This study provides the molecular basis and routes of the COVID-19 progression due to comorbidities. We believe these findings might be useful to further understand the intricate association of these diseases as well as for the therapeutic development.


Subject(s)
COVID-19/genetics , Diabetes Mellitus/genetics , Hypertension/genetics , Lung Neoplasms/genetics , Myocardial Infarction/genetics , Transcriptome/genetics , ADAM Proteins , COVID-19/virology , Computational Biology , Humans , Interferon Regulatory Factor-7 , Lung Neoplasms/pathology , Membrane Proteins , Myxovirus Resistance Proteins/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Transcription Factors/genetics
12.
Clin Nutr ESPEN ; 44: 475-478, 2021 08.
Article in English | MEDLINE | ID: covidwho-1242904

ABSTRACT

BACKGROUND & AIMS: Obesity is associated with low grade systemic inflammation and insulin resistance. Although metabolic and immunological changes may contribute to the increased risk for COVID-19 mortality in obese, little is known about the impact of obesity in the lungs of patients with COVID-19. METHODS: We analyzed gene expression profiles of autopsy lungs of a cohort of 14 COVID-19 patients and 4 control individuals. Patients were divided into 3 groups according to their comorbidities: hypertension, type 2 diabetes (T2D) and obesity. We then identified the molecular alterations associated with these comorbidities in COVID-19 patients. RESULTS: Patients with only hypertension showed higher levels of inflammatory genes and B-cell related genes when compared to those with T2D and obesity. However, the levels of IFN-gamma, IL22, and CD274 (a ligand that binds to receptor PD1) were higher in COVID-19 patients with T2D and obesity. Several metabolic- and immune-associated genes such as G6PD, LCK and IL10 were significantly induced in the lungs of the obese group. CONCLUSION: Our findings suggest that SARS-CoV-2 infection in the lungs may exacerbate the immune response and chronic condition in obese COVID-19 patients.


Subject(s)
COVID-19/complications , COVID-19/genetics , Gene Expression/genetics , Lung/immunology , Obesity/complications , Obesity/genetics , Autopsy , COVID-19/immunology , Cohort Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/immunology , Humans , Hypertension/complications , Hypertension/genetics , Hypertension/immunology , Obesity/immunology , SARS-CoV-2
13.
Vascul Pharmacol ; 140: 106861, 2021 10.
Article in English | MEDLINE | ID: covidwho-1180098

ABSTRACT

The virus responsible for the coronavirus disease of 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidences suggest that COVID-19 could trigger cardiovascular complications in apparently healthy patients. Coronaviruses are enveloped positive-strand RNA viruses acting as a pathogen-associated molecular pattern (PAMP)/ danger-associated molecular patterns (DAMP). Interestingly, Toll-like receptor (TLR) 3 recognize both PAMPs DAMPs and is activated by viral double-stranded RNA (dsRNA) leading to activation of TIR receptor domain-containing adaptor inducing IFN-ß (TRIF) dependent pathway. New evidence has shown a link between virus dsRNA and increased BP. Hence, we hypothesize that COVID-19 infection may be over activating the TLR3 through dsRNA, evoking further damage to the patients, leading to vascular inflammation and increased blood pressure, favoring the development of several cardiovascular complications, including hypertension.


Subject(s)
COVID-19/genetics , COVID-19/pathology , Hypertension/genetics , RNA, Double-Stranded/genetics , Toll-Like Receptor 3/genetics , Animals , Humans , Hypertension/pathology , Hypertension/virology , Mice , SARS-CoV-2/pathogenicity , Signal Transduction/genetics
14.
Int J Mol Sci ; 22(4)2021 Feb 08.
Article in English | MEDLINE | ID: covidwho-1069831

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) have a wide variety of clinical outcomes ranging from asymptomatic to severe respiratory syndrome that can progress to life-threatening lung lesions. The identification of prognostic factors can help to improve the risk stratification of patients by promptly defining for each the most effective therapy to resolve the disease. The etiological agent causing COVID-19 is a new coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that enters cells via the ACE2 receptor. SARS-CoV-2 infection causes a reduction in ACE2 levels, leading to an imbalance in the renin-angiotensin system (RAS), and consequently, in blood pressure and systemic vascular resistance. ERAP1 and ERAP2 are two RAS regulators and key components of MHC class I antigen processing. Their polymorphisms have been associated with autoimmune and inflammatory conditions, hypertension, and cancer. Based on their involvement in the RAS, we believe that the dysfunctional status of ERAP1 and ERAP2 enzymes may exacerbate the effect of SARS-CoV-2 infection, aggravating the symptomatology and clinical outcome of the disease. In this review, we discuss this hypothesis.


Subject(s)
Aminopeptidases/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Hypertension/enzymology , Minor Histocompatibility Antigens/metabolism , Renin-Angiotensin System , SARS-CoV-2/metabolism , Age Factors , Aminopeptidases/genetics , Antigen Presentation/genetics , COVID-19/virology , Female , Humans , Hypertension/genetics , Male , Minor Histocompatibility Antigens/genetics , Polymorphism, Single Nucleotide , Sex Factors , Virus Internalization
15.
Epidemiol Prev ; 44(5-6 Suppl 2): 169-182, 2020.
Article in English | MEDLINE | ID: covidwho-1068137

ABSTRACT

As the Coronavirus situation (COVID-19) continues to evolve, many questions concerning the factors relating to the diffusion and severity of the disease remain unanswered.Whilst opinions regarding the weight of evidence for these risk factors, and the studies published so far are often inconclusive or offer contrasting results, the role of comorbidities in the risk of serious adverse outcomes in patients affected with COVID-19 appears to be evident since the outset. Hypertension, diabetes, and obesity are under discussion as important factors affecting the severity of disease. Air pollution has been considered to play a role in the diffusion of the virus, in the propagation of the contagion, in the severity of symptoms, and in the poor prognosis. Accumulating evidence supports the hypothesis that environmental particulate matter (PM) can trigger inflammatory responses at molecular, cellular, and organ levels, sustaining respiratory, cardiovascular, and dysmetabolic diseases.To better understand the intricate relationships among pre-existing conditions, PM, and viral infection, we examined the response at the molecular level of T47D human breast adenocarcinoma cells exposed to different fractions of PM. T47D cells express several receptors, including the aryl hydrocarbon receptor (AhR), and ACE2, the main - but not the only - receptor for SARS-CoV-2 entry.PM samples were collected in an urban background site located in the Northern area of the City of Bologna (Emilia-Romagna Region, Northern Italy) during winter 2013. T47D cells were exposed to organic or aqueous (inorganic) extracts at the final concentration of 8 m3 for a 4-hour duration. Both the concentration and the exposure time were chosen to resemble an average outdoor exposure. RNA was extracted from cells, purified and hybridised on 66k microarray slides from Agilent.The lists of differentially expressed genes in PM organic extracts were evaluated by using Metacore, and an enrichment analysis was performed to identify pathways maps, process networks, and disease by biomarkers altered after T47D treatment.The analysis of the modulated genes gave evidence for the involvement of PM in dysmetabolic diseases, including diabetes and obesity, and hypertension through the activation of the aryl hydrocarbon receptor (AhR) canonical pathway.On the basis of current knowledge, existing data, and exploratory experimental evidence, we tease out the likely molecular interplay that can ultimately tip the disease outcome into severity. Looking beyond ACE2, several additional key markers are identified. Disruption of these targets worsens pre-existing conditions and/or exacerbates the adverse effects induced by SARS-CoV-2 infection. Whilst appropriately designed, epidemiological studies are very much needed to investigate these associations based on our hypothesis of investigation, by reviewing recent experimental and epidemiological evidence, here we speculate and provide new insights on the possible role of environmental pollution in the exacerbation of effects by SARS-CoV-2 and other respiratory viruses. This work is intended to assist in the development of appropriate investigative approaches to protect public health.


Subject(s)
Air Pollution/adverse effects , COVID-19/epidemiology , Particulate Matter/adverse effects , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/physiology , COVID-19/etiology , Cell Line, Tumor , Comorbidity , Coronaviridae/physiology , Cytochrome P-450 CYP1A1/physiology , Diabetes Mellitus/epidemiology , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Disease Susceptibility , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Hypertension/epidemiology , Hypertension/genetics , Hypertension/metabolism , Inflammation/epidemiology , Inflammation/genetics , Inflammation/metabolism , Italy , Obesity/epidemiology , Obesity/genetics , Obesity/metabolism , Particulate Matter/pharmacology , Receptors, Aryl Hydrocarbon/physiology , Receptors, Virus/physiology , Risk , SARS-CoV-2/ultrastructure , Signal Transduction
16.
Eur Heart J ; 41(48): 4580-4588, 2020 12 21.
Article in English | MEDLINE | ID: covidwho-1066303

ABSTRACT

AIMS: Angiotensin-converting enzyme 2 (ACE2) is the cellular entry point for severe acute respiratory syndrome coronavirus (SARS-CoV-2)-the cause of coronavirus disease 2019 (COVID-19). However, the effect of renin-angiotensin system (RAS)-inhibition on ACE2 expression in human tissues of key relevance to blood pressure regulation and COVID-19 infection has not previously been reported. METHODS AND RESULTS: We examined how hypertension, its major metabolic co-phenotypes, and antihypertensive medications relate to ACE2 renal expression using information from up to 436 patients whose kidney transcriptomes were characterized by RNA-sequencing. We further validated some of the key observations in other human tissues and/or a controlled experimental model. Our data reveal increasing expression of ACE2 with age in both human lungs and the kidney. We show no association between renal expression of ACE2 and either hypertension or common types of RAS inhibiting drugs. We demonstrate that renal abundance of ACE2 is positively associated with a biochemical index of kidney function and show a strong enrichment for genes responsible for kidney health and disease in ACE2 co-expression analysis. CONCLUSION: Our results indicate that neither hypertension nor antihypertensive treatment is likely to alter the expression of the key entry receptor for SARS-CoV-2 in the human kidney. Our data further suggest that in the absence of SARS-CoV-2 infection, kidney ACE2 is most likely nephro-protective but the age-related increase in its expression within lungs and kidneys may be relevant to the risk of SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antihypertensive Agents/pharmacology , Hypertension , Kidney Tubules/metabolism , Lung/metabolism , Renin-Angiotensin System/drug effects , Adrenergic beta-Antagonists/pharmacology , Adult , Age Factors , Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , COVID-19/complications , Diuretics/pharmacology , Female , Gene Expression Profiling , Glomerular Filtration Rate , Humans , Hypertension/drug therapy , Hypertension/genetics , Kidney Tubules/physiopathology , Male , Middle Aged , Rats , Rats, Inbred SHR , SARS-CoV-2 , Sequence Analysis, RNA , Sex Factors , Transcriptome/drug effects
17.
Am J Hypertens ; 34(4): 367-376, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1003506

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) has been identified as the entry receptor for coronaviruses into human cells, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). Since hypertension (HT) is a leading comorbidity in non-survivors of COVID-19, we tested for association between ACE2 gene and HT in interaction with specific pre-existing conditions known to be associated with COVID-19 severity. METHODS: Genetic analysis of ACE2 gene was conducted in French-Canadian (FC) and British populations. RESULTS: In FC individuals, the T allele of the single nucleotide polymorphism rs2074192 of ACE2 gene was a risk factor for HT in adult obese males [odds ratio (OR) = 1.39, 95% confidence interval (CI) 1.06-1.83)] and even more so in obese males who smoked (OR = 1.67, CI: 1.24-2.55), but not in lean males, non-smoker males or females. The T allele was significantly associated with severity of HT and with earlier penetrance of HT in obese smoking males. Significant interaction between the T allele and obesity was present in both sexes. The association of ACE2 (rs233575) genotype with blood pressure was also seen in adolescents but the interaction with obesity was present only in females. Several variants in ACE2 gene were found to be associated with HT in obese, smoking males in British individuals of the UK Biobank. In addition, we observed more severe outcomes to COVID-19 in association with ACE2 risk alleles in obese, smoking males. CONCLUSIONS: This is the first report that ACE2 variants are associated with earlier penetrance and more severe HT and with more severe outcomes of COVID-19 in obese smoking males.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Hypertension , Obesity , Adolescent , Blood Pressure/physiology , COVID-19/epidemiology , COVID-19/therapy , Canada/epidemiology , Comorbidity , Female , Genetic Predisposition to Disease , Humans , Hypertension/diagnosis , Hypertension/epidemiology , Hypertension/genetics , Male , Middle Aged , Obesity/diagnosis , Obesity/epidemiology , Obesity/etiology , Polymorphism, Single Nucleotide , SARS-CoV-2/physiology , Severity of Illness Index , Sex Factors , Smoking/epidemiology
18.
Nat Biotechnol ; 39(6): 705-716, 2021 06.
Article in English | MEDLINE | ID: covidwho-997913

ABSTRACT

In coronavirus disease 2019 (COVID-19), hypertension and cardiovascular diseases are major risk factors for critical disease progression. However, the underlying causes and the effects of the main anti-hypertensive therapies-angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs)-remain unclear. Combining clinical data (n = 144) and single-cell sequencing data of airway samples (n = 48) with in vitro experiments, we observed a distinct inflammatory predisposition of immune cells in patients with hypertension that correlated with critical COVID-19 progression. ACEI treatment was associated with dampened COVID-19-related hyperinflammation and with increased cell intrinsic antiviral responses, whereas ARB treatment related to enhanced epithelial-immune cell interactions. Macrophages and neutrophils of patients with hypertension, in particular under ARB treatment, exhibited higher expression of the pro-inflammatory cytokines CCL3 and CCL4 and the chemokine receptor CCR1. Although the limited size of our cohort does not allow us to establish clinical efficacy, our data suggest that the clinical benefits of ACEI treatment in patients with COVID-19 who have hypertension warrant further investigation.


Subject(s)
COVID-19 Drug Treatment , Chemokine CCL3/genetics , Chemokine CCL4/genetics , Hypertension/drug therapy , Receptors, CCR1/genetics , Adult , Angiotensin Receptor Antagonists/administration & dosage , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/adverse effects , COVID-19/complications , COVID-19/genetics , COVID-19/virology , Disease Progression , Female , Gene Expression Regulation/drug effects , Humans , Hypertension/complications , Hypertension/genetics , Hypertension/pathology , Inflammation/complications , Inflammation/drug therapy , Inflammation/genetics , Inflammation/virology , Male , Middle Aged , RNA-Seq , Respiratory System/drug effects , Respiratory System/pathology , Respiratory System/virology , Risk Factors , SARS-CoV-2/pathogenicity , Single-Cell Analysis
19.
Bioessays ; 43(3): e2000112, 2021 03.
Article in English | MEDLINE | ID: covidwho-985954

ABSTRACT

This renin-angiotensin system (RAS) interpretation is focused on differences in tissue dependence on RAS and on the topological hierarchy that allows mediators to act only on downstream tissues. Dependence of tissues on RAS: Tested by expectation maximization clustering of the RNA human tissue expression (https://biogps.org/). ACE and vasoconstrictive AT1R clustered with the prorenin receptor. ACE2 and dilatory MAS1 clustered with nine RAS-related genes, highly expressed in: Liver; Cardiac_Myocytes; Skeletal_Muscle; Uterus; Kidney; Lung; Small_Intestine; Smooth_Muscle. RAS and stress accumulation: While prorenin is active after binding to its receptor, binding of soluble renin increases its enzymatic activity several times. Increased renin secretion multiplies the overall capacity for producing Ang I, leading to hypertension and increased vascular resistance. Coronavirus infection and comorbidities: Cardiorespiratory failure during infection is linked to the previously altered RAS role in lungs and myocardium. Reduced vasodilation by ACE2 lead to vasoconstriction and suboptimal tissue perfusion patterns. Also see the video abstract here https://www.youtube.com/watch?v=Jf0Iped-Mws.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Hypertension/genetics , Renin-Angiotensin System/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Aged , Angiotensin I/genetics , Angiotensin I/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/mortality , COVID-19/virology , Gene Expression Regulation , Humans , Hypertension/metabolism , Hypertension/mortality , Hypertension/virology , Lung/metabolism , Lung/pathology , Lung/virology , Myocardium/metabolism , Myocardium/pathology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/genetics , Receptor, Angiotensin, Type 2/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Renin/genetics , Renin/metabolism , Signal Transduction , Survival Analysis
20.
Med Hypotheses ; 146: 110448, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-969015

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is able to produce an excessive host immune reaction and may leads to severe disease- a life-threatening condition occurring more often in patients suffering from comorbidities such as hypertension, diabetes and obesity. Infection by human corona viruses highly depends on host microRNA (miR) involved in regulation of host innate immune response and inflammation-modulatory miR-146a is among the first miRs induced by immune reaction to a virus. Moreover, recent analysis showed that miR-146 is predicted to target at the SARS-CoV-2 genome. As the dominant regulator of Toll-like receptors (TLRs) downstream signaling, miR-146a may limit excessive inflammatory response to virus. Downregulation of circulating miR-146a was found in diabetes, obesity and hypertension and it is reflected by enhanced inflammation and fibrosis, systemic effects accompanying severe COVID-19. Thus it could be hypothesized that miR-146a deficiency may contribute to severe COVID-19 state observed in diabetes, obesity and hypertension but further investigations are needed.


Subject(s)
COVID-19/complications , Diabetes Mellitus/genetics , Hypertension/complications , MicroRNAs/genetics , Obesity/complications , Pandemics , SARS-CoV-2 , COVID-19/genetics , COVID-19/immunology , Diabetes Complications/genetics , Diabetes Complications/immunology , Diabetes Mellitus/immunology , Down-Regulation , Humans , Hypertension/genetics , Hypertension/immunology , Immunity, Innate/genetics , Inflammation/complications , Inflammation/genetics , Inflammation/immunology , MicroRNAs/metabolism , Models, Biological , Obesity/genetics , Obesity/immunology , Risk Factors , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL